join irreducible - significado y definición. Qué es join irreducible
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:     

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es join irreducible - definición

ONE CASE WHEN SOLVING A CUBIC EQUATION
Irreducible Case; Irreducible Case (cubic); Irreducible cubic

Casus irreducibilis         
In algebra, casus irreducibilis (Latin for "the irreducible case") is one of the cases that may arise in solving polynomials of degree 3 or higher with integer coefficients algebraically (as opposed to numerically), i.e.
left outer join         
  • A Venn Diagram representing the Left Join SQL statement between tables A and B.
  • 
A Venn Diagram representing the Right Join SQL statement between tables A and B.
  • A Venn Diagram representing the Full Join SQL statement between tables A and B.
SQL CLAUSE
Outer join; Inner join; Join algorithm; Cross join; Equivalence join; Full outer join; Left outer join; Right outer join; Semi join; SQL join; Sql join; Database join; Join (sql); Join (database); Equijoin; Group join; Left join; Right join; Cartesian join; Table join; Query (database); Natural join (SQL); JOIN (SQL); Self-join; Join sql; Join statement; Inner join sql; Sql inner join; Equi-join; Straight join
join         
WIKIMEDIA DISAMBIGUATION PAGE
JOIN; Joining; Joins; Join (disambiguation); Joined; Join (command); Joining (disambiguation)
1. <database> inner join (common) or outer join (less common). 2. <theory> least upper bound. (1998-11-23)

Wikipedia

Casus irreducibilis

In algebra, casus irreducibilis (Latin for "the irreducible case") is one of the cases that may arise in solving polynomials of degree 3 or higher with integer coefficients algebraically (as opposed to numerically), i.e., by obtaining roots that are expressed with radicals. It shows that many algebraic numbers are real-valued but cannot be expressed in radicals without introducing complex numbers. The most notable occurrence of casus irreducibilis is in the case of cubic polynomials that have three real roots, which was proven by Pierre Wantzel in 1843. One can see whether a given cubic polynomial is in so-called casus irreducibilis by looking at the discriminant, via Cardano's formula.